

Axial Piston Variable Pump A4VG

RE 92003/06.12 Replaces: 06.09 1/68

Data sheet

Series 32 Size 28 to 250 Nominal pressure 400 bar Maximum pressure 450 bar Closed circuit

Contents

Ordering code for standard program	2
Technical data	5
NV – Version without control module	11
DG – Hydraulic control, direct controlled	11
HD - Proportional control hydraulic, pilot-pressure related	12
HW - Proportional control hydraulic, mechanical servo	13
EP – Proportional control electric	14
EZ – Two-point control electric	15
DA – Automatic control speed-related	16
Dimensions size 28 to 250	18
Through drive dimensions	50
Overview of mounting options	52
Combination pumps A4VG + A4VG	53
High-pressure relief valves	54
Pressure cut-off	55
Mechanical stroke limiter	56
Ports X_3 and X_4 for stroking chamber pressure	56
Filtration boost circuit / external supply	57
Swivel angle sensor	61
Connector for solenoids	62
Rotary inch valve	63
Installation dimensions for coupling assembly	64
Installation instructions	65
General instructions	68

Features

- Variable axial piston pump of swashplate design for hydrostatic drives in closed circuit.
- The flow is proportional to the drive speed and displacement.
- The flow can be infinitely varied by adjusting the swashplate angle.
- Flow direction changes smoothly when the swashplate is moved through the neutral position.
- A wide range of highly adaptable control devices with different control and regulating functions, for all important applications.
- Two pressure-relief valves are provided on the high-pressure side to protect the hydrostatic transmission (pump and motor) from overload.
- The high-pressure relief valves also function as boost valves.
- The integrated boost pump acts as a feed pump and control pressure supply.
- The maximum boost pressure is limited by a built-in lowpressure relief valve.
- As standard with integrated pressure cut-off

Technical data

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size			NG		28	40	56	71	90	125	180	250
Displacement geometric, per revolution												
variable pump		V _{g max}	cm ³	28	40	56	71	90	125	180	250	
boost pump (at $p = 20$ bar)		V _{g Sp}	cm ³	6.1	8.6	11.6	19.6	19.6	28.3	39.8	52.5	
Speed ¹⁾												
maximum at V _{g max}			n _{nom}	rpm	4250	4000	3600	3300	3050	2850	2500	2400
limited maximum ²⁾		n _{max}	rpm	4500	4200	3900	3600	3300	3250	2900	2600	
intermittent maximum ³⁾		n _{max}	rpm	5000	5000	4500	4100	3800	3450	3000	2700	
minimum		n _{min}	rpm	500	500	500	500	500	500	500	500	
Flow												
at n_{nom} and $V_{g max}$			q _v	L/min	119	160	202	234	275	356	450	600
Power ⁴⁾												
at n_{nom} , $V_{g max}$ and	$\Delta p = 4$	00 bar	Р	kW	79	107	134	156	183	238	300	400
Torque ⁴⁾												
at $V_{g max}$ and $\Delta p =$		00 bar	Т	Nm	178	255	357	452	573	796	1146	1592
	∆p = 1	00 bar	Т	Nm	45	64	89	113	143	199	286	398
Rotary stiffness drive shaft S T A Z U		S	С	kNm/rad	31.4	69	80.8	98.8	158.1	218.3	244.5	354.5
		С	kNm/rad	-	-	95	120.9	_	252.1	318.4	534.3	
		С	kNm/rad	-	79.6	95.8	142.4	176.8	256.5	_	-	
		С	kNm/rad	32.8	67.5	78.8	122.8	137	223.7	319.6	624.2	
		С	kNm/rad	-	50.8	-	_	107.6	-	_	-	
Moment of inertia for rotary group		J_{GR}	kgm ²	0.0022	0.0038	0.0066	0.0097	0.0149	0.0232	0.0444	0.0983	
Maximum angular acceleration ⁵⁾		α	rad/s ²	38000	30000	24000	21000	18000	14000	11000	6700	
Case volume			V	L	0.9	1.1	1.5	1.3	1.5	2.1	3.1	6.3
Mass approx. (without through drive)		m	kg	29	31	38	50	60	80	101	156	
Center of gravity ⁶⁾		Х	mm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
			Y	mm	24	20	20	15	20	30	33	30
			Z	mm	105	112	106	135	145	160	180	203

1) The values are valid:

- for the optimum viscosity range from $v_{opt} = 36$ to 16 mm²/s

- with hydraulic fluid based on mineral oils

2) Limited maximum speed:

- at half of corner power (e. g. at $V_{g max}$ and p_N /2)

3) Intermittent maximum speed:

at high idle speed

- at overspeed: $\Delta p = 70$ to 150 bar and V_{g max}
- at reversing peaks: $\Delta p < 300$ bar and t < 0.1 s.
- 4) Without boost pump

5) The data are valid for values between the minimum required and maximum permissible speed.

Valid for external excitation (e. g. engine 2 to 8 times rotary frequency; cardan shaft twice the rotary frequency).

The limit value applies for a single pump only.

The load capacity of the connection parts must be considered.

6) Center of gravity

Note:

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.